姓名:尹保利 |
|
职称:讲师 |
部门:信息与计算科学系 |
研究方向:微分方程数值解 |
邮箱:baolimath@126.com |
个人简介
尹保利,男,山东济南人。2013年毕业于欧冠体育手机版官网数理学基地(数学)专业;2017年于欧冠体育手机版官网硕博连读,并于2021年获博士学位同时留校任教。
主要从事于微分方程数值算法设计与数值分析工作。针对目前广为流行的卷积数值积分(CQ)方法,通过引入位移参数发展了位移卷积数值积分(SCQ)方法。该方法丰富了数值逼近格式的设计手段,特别是对于保结构算法的设计等。另外,基于该方法推广了若干经典差分逼近格式,并发展了相应数值分析理论和快速算法等。相关成果发表在《Journal of Computational Physics》、《BIT Numerical Mathematics》、《Journal of Scientific Computing》、《Applied Numerical Mathematics》、《Discrete & Continuous Dynamical Systems-B》等SCI期刊上。
教学情况
高等数学、线性代数、现代数值方法基础理论选讲、数学分析辅导
指导本科生情况
指导校级大学生创新训练计划项目3项(国家级2项,校级1项)
科研项目
主持国家自然科学基金青年项目1项
主持2022年度自治区本级引进高层次人才科研支持1项
参与国家自然科学基金地区基金项目多项
发表论文
[1] Baoli Yin, Guoyu Zhang, Yang Liu, Hong Li, Convolution quadrature for Hadamard fractional calculus and correction methods for the subdiffusion with singular source terms, Communications in Nonlinear Science and Numerical Simulation, 2024, 138: 108221.
[2] Baoli Yin, Yang Liu, Hong Li, Sharp error analysis for averaging Crank-Nicolson schemes with corrections for subdiffusion with nonsmooth solutions, Communications on Applied Mathematics and Computation, 2024, 1-20.
[3] Baoli Yin, Yang Liu, Hong Li, Zhimin Zhang, Two families of second-order fractional numerical formulas and applications to fractional differential equations, Fractional Calculus and Applied Analysis, 2023, 26(4): 1842-1867.
[4] Guoyu Zhang, Chengming Huang, A.A. Alikhanov, Baoli Yin, A high-order discrete energy decay and maximum-principle preserving scheme for time fractional Allen-Cahn equation, Journal of Scientific Computing, 2023, 96(2): 39.
[5] Baoli Yin, Yang Liu, Hong Li, Zhimin Zhang, On discrete energy dissipation of Maxwell's equations in a Cole-Cole dispersive medium, J. Comput. Math, 2023, 41: 980-1002.
[6] Baoli Yin, Guoyu Zhang, Yang Liu, Hong Li, The Construction of High-Order Robust Theta Methods with Applications in Subdiffusion Models, Fractal and Fractional, 2022, 6(8): 417.
[7] Baoli Yin, Yang Liu, Hong Li, Zhimin Zhang, Efficient shifted fractional trapezoidal rule for subdiffusion problems with nonsmooth solutions on uniform meshes, BIT Numerical Mathematics, 2022, 631-666.
[8] Baoli Yin, Jinfeng Wang, Yang Liu, Hong Li, A structure preserving difference scheme with fast algorithms for high dimensional nonlinear space-fractional Schrödinger equations, Journal of Computational Physics, 2021, 425:109869.
[9] Yang Liu, Baoli Yin, Hong Li, Zhimin Zhang, The unified theory of shifted convolution quadrature for fractional calculus, Journal of Scientific Computing, 2021, 89(1): 1-24.
[10] Baoli Yin, Yang Liu, Hong Li, Fanhai Zeng, A class of efficient time-stepping methods for multi-term time-fractional reaction diffusion-wave equations, Applied Numerical Mathematics, 2021, 165:56-82.
[11] Baoli Yin, Yang Liu, Hong Li, Zhimin Zhang, Approximation methods for the distributed order calculus using the convolution quadrature, Discrete & Continuous Dynamical Systems-B, 2021, 26(3):1447.
[12] Baoli Yin, Yang Liu, Hong Li, Zhimin Zhang, Finite element methods based on two families of second-order numerical formulas for the fractional cable model with smooth solutions, Journal of Scientific Computing, 2020, 84(1):1-22.
[13] Baoli Yin, Yang Liu, Hong Li, A class of shifted high-order numerical methods for the fractional mobile/immobile transport equations, Applied Mathematics and Computation, 2020, 368:124799.
[14] Baoli Yin, Yang Liu, Hong Li, Necessity of introducing non-integer shifted parameters by constructing high accuracy finite difference algorithms for a two-sided space-fractional advection-diffusion model, Applied Mathematics Letters, 2020, 105:106347.
[15] Baoli Yin, Yang Liu, Hong Li, Siriguleng He, Fast algorithm based on TT-M FE system for space fractional Allen-Cahn equations with smooth and non-smooth solutions, Journal of Computational Physics, 2019, 379:351-372.